On vector bundles destabilized by Frobenius pull-back

نویسندگان

  • Kirti Joshi
  • S. Ramanan
  • Eugene Z. Xia
  • Jiu-Kang Yu
چکیده

Let X be a smooth projective curve of genus g > 1 over an algebraically closed field of positive characteristic. This paper is a study of a natural stratification, defined by the absolute Frobenius morphism of X, on the moduli space of vector bundles. In characteristic two, there is a complete classification of semi-stable bundles of rank 2 which are destabilized by Frobenius pull-back. We also show that these strata are irreducible and obtain their respective dimensions. In particular, the dimension of the locus of bundles of rank two which are destabilized by Frobenius is 3g − 4. These Frobenius destabilized bundles also exist in characteristics two, three and five with ranks 4, 3 and 5, respectively. Finally, there is a connection between (pre)-opers and Frobenius destabilized bundles. This allows an interpretation of some of the above results in terms of pre-opers and provides a mechanism for constructing Frobenius destabilized bundles in large characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hitchin-mochizuki Morphism, Opers and Frobenius-destabilized Vector Bundles over Curves

Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically closed field k of characteristic p > 0. For p sufficiently large (explicitly given in terms of r, g) we construct an atlas for the locus of all Frobenius-destabilized bundles (i.e. we construct all Frobenius-destabilized bundles of degree zero up to isomorphism). This is done by exhibiting a surjective morphism from...

متن کامل

On Frobenius-destabilized Rank-2 Vector Bundles over Curves

Let X be a smooth projective curve of genus g ≥ 2 over an algebraically closed field k of characteristic p > 0. Let MX be the moduli space of semistable rank-2 vector bundles over X with trivial determinant. The relative Frobenius map F : X → X1 induces by pull-back a rational map V : MX1 99K MX . In this paper we show the following results. (1) For any line bundle L over X , the rank-p vector ...

متن کامل

Moduli of Vector Bundles on Curves in Positive Characteristic

Let X be a projective curve of genus 2 over an algebraically closed field of characteristic 2. The Frobenius map on X induces a rational map on the moduli space of rank-2 bundles. We show that up to isomorphism, there is only one (up to tensoring by an order two line bundle) semi-stable vector bundle of rank 2 with determinant equal to a theta characteristic whose Frobenius pull-back is not sta...

متن کامل

Moduli of Vector Bundles on Curves in Positive Characteristics

Let X be a projective curve of genus 2 over an algebraically closed field of characteristic 2. The Frobenius map on X induces a rational map on the moduli scheme of rank-2 bundles. We show that up to isomorphism, there is only one (up to tensoring by an order two line bundle) semi-stable vector bundle of rank 2 (with determinant equal to a theta characteristic) whose Frobenius pull-back is not ...

متن کامل

The Frobenius map , rank 2 vector bundles and Kummer ’ s quartic surface in characteristic 2 and 3 Yves Laszlo and Christian Pauly

Our interest in the diagram (1.1) comes from questions related to the action of the Frobenius map on vector bundles like e.g. surjectivity of V , density of Frobenius-stable bundles, loci of Frobenius-destabilized bundles (see [LP]). These questions are largely open when the rank of the bundles, the genus of the curve or the characteristic of the field are arbitrary. In [LP] we made use of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002